Universal distance ratios for 2D SAWs: series results

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1990 J. Phys. A: Math. Gen. 23 L117
(http://iopscience.iop.org/0305-4470/23/3/007)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 129.252.86.83
The article was downloaded on 01/06/2010 at 09:56

Please note that terms and conditions apply.

LETTER TO THE EDITOR

Universal distance ratios for 2D SAWs: series results

A J Guttmann and Y S Yang \dagger
Department of Mathematics, The University of Melbourne, Parkville, Victoria 3052, Australia

Received 21 November 1989

Abstract

The mean-square distance of a monomer to the origin and the mean-square distance of the centre of mass to the origin are studied by exact enumeration on the square and triangular lattices. The numerical results are inconsistent with the theoretical prediction of Cardy and Saleur by more than fifteen times the numerical uncertainty in our calculation.

Due to their connection with polymer physics and the $n \rightarrow 0 \quad n$-vector model [1], self-avoiding walks (sAws) have attracted much interest over the years. One aspect of the metric properties of this model has recently been studied by Cardy and Saleur [2]. Defining

$$
\begin{align*}
& \nu_{N}=\left\langle R_{\mathrm{g}}^{2}\right\rangle_{N} /\left\langle R_{\mathrm{e}}^{2}\right\rangle_{N} \\
& \mu_{N}=\left\langle R_{\mathrm{m}}^{2}\right\rangle_{N} /\left\langle R_{\mathrm{e}}^{2}\right\rangle_{N} \\
& F_{N}\left(y_{t} / y_{h}, \nu_{N}, \mu_{N}\right)=\left(2+\frac{y_{t}}{y_{h}}\right) \nu_{N}+\frac{1}{8}-\mu_{N} \tag{1}
\end{align*}
$$

using the c-theorem of Zamolodchikov [3], Cardy et al [2] derived a universal relation for SAWs on two-dimensional lattices:

$$
\begin{equation*}
\lim _{N \rightarrow \infty} F_{N}\left(y_{t} / y_{h}, \nu_{N}, \mu_{N}\right)=0 \tag{2}
\end{equation*}
$$

Here $\left\langle R_{\mathrm{g}}^{2}\right\rangle$ and $\left\langle R_{\mathrm{e}}^{2}\right\rangle$ are the usual mean-square radius of gyration and the mean-square end-to-end distance respectively, while $\left\langle R_{\mathrm{m}}^{2}\right\rangle$ is the mean-square distance of a monomer to the origin. $\langle\ldots\rangle_{N}$ denotes the average over the ensemble of N-step saws. The exponents y_{t} and y_{h} are known from Coulomb gas or conformal invariance techniques [4] to be $\frac{4}{3}$ and $\frac{91}{48}$ respectively for 2D SAWs. The second-order ε expansions [5,6] predicted $\nu_{\infty}=0.1428$ and $\mu_{\infty}=0.4367$. The substitution of the above data into (2) gives $F_{\infty}=0.074$. Data from an early exact enumeration calculation [7] yield a similar result with $F_{\infty}=0.066 \pm 0.004$.

The quantities $\left\langle R_{g}^{2}\right\rangle$ and $\left\langle R_{e}^{2}\right\rangle$ have been studied extensively by many authors. $\left\langle R_{g}^{2}\right\rangle$ is known to 21 terms on the square lattice and to 15 terms on the triangular lattice [8], while $\left\langle R_{\mathrm{e}}^{2}\right\rangle$ is known to 27 terms on the square lattice [9-13] and to 19 terms on the triangular lattice [10-13]. However, it appears that there have been no studies of $\left\langle R_{\mathrm{m}}^{2}\right\rangle$ since the 20 year old study by Domb and Hioe [7]. The present letter is aimed at an exact enumeration study of $\left\langle R_{\mathrm{m}}^{2}\right\rangle$ on the square and triangular lattices to compare with the result of Cardy and Saleur.

[^0]The N-step self-avoiding walk configurations are generated by a conventional backtracking method and the square distance of every monomer to one of the end points is accumulated, giving $(N+1) C_{N}\left\langle R_{m}^{2}\right\rangle_{N}$. The calculated data for the square and triangular lattices are listed in table 1. For every sAw configuration, we also summed the vector distance of every monomer to the origin, then accumulated the square of this quantity over all the saw configurations. This gives us $(N+1)^{2} C_{N}\left\langle R_{\mathrm{c}}^{2}\right\rangle_{N}$. Here $\left\langle R_{\mathrm{c}}^{2}\right\rangle$ is the mean-square distance of the centre of mass to the origin (table 1). These data confirm the relation $\left\langle R_{\mathrm{m}}^{2}\right\rangle_{N}=\left\langle R_{g}^{2}\right\rangle_{N}+\left\langle R_{\mathrm{c}}^{2}\right\rangle_{N}$ and show that our definition is consistent with previously published data. Using the known data [8-13] for $\left\langle R_{\mathrm{g}}^{2}\right\rangle$ and $\left\langle R_{e}^{2}\right\rangle$, and our data for $\left\langle R_{\mathrm{m}}^{2}\right\rangle$, as tabulated in table 1 , we calculated the ratios ν_{N} and μ_{N} and extrapolated these sequences by a variety of sequence extrapolation techniques. These included all the methods that have been found [14] to be most successful for lattice statistics problems. These included Nevelle tables, Levin's utransform, Brezinski's θ algorithm and Wynn's ε algorithm. The results were consistent from method to method and for both lattices. We found that $\nu_{x}=0.1396 \pm 0.001$ and $\mu_{\infty}=0.4375 \pm 0.002$ included estimates from all methods, for both lattices. The quoted error bars are in fact more than double the actual spread in the estimates. Combining these results (2), we obtain $F_{\propto}=0.065 \pm 0.004$, in complete agreement with earlier, shorter, enumerations.

This discrepancy with the theoretical calculation of Cardy and Saleur means that at least one of the results is wrong. In such circumstances it is natural to suspect the numerical results before the theoretical calculation. It is possible that we are seeing a 'short series' effect, but the precise agreement of the corresponding calculation for

Table 1. Exact enumeration results for the mean-square distance of the monomers to the origin and the centre of mass to the origin on two-dimensional lattices.

N	Square lattice		Triangular lattice	
	$\frac{1}{4}(N+1) C_{N}\left\langle R_{m}^{2}\right\rangle_{N}$	$\frac{1}{4}(N+1)^{2} C_{N}\left(R_{\mathrm{c}}^{2}\right)_{N}$	${ }_{6}^{\frac{1}{6}}(N+1) C_{N}\left\langle R_{m}^{2}\right\rangle_{N}$	$\frac{1}{6}(N+1)^{2} C_{N}\left\langle R_{\mathrm{c}}^{2}\right\rangle_{N}$
1	1	1	1	1
2	11	19	17	29
3	74	180	178	430
4	390	1228	1476	4602
5	1801	6919	10667	40697
6	7537	34251	70359	317319
7	29684	155312	434708	2261924
8	110796	656984	2557166	15075338
9	399375	2642195	14477823	95355739
10	1391809	10173705	79492861	578428105
11	4741466	37908012	425633898	3390550172
12	15783154	137098900	2231674940	19314366036
13	51704949	484531231	11494836257	107394577387
14	166550157	1675623115	58310378811	584885810177
15	530165200	5696578328	291901836462	3128553102050
16	1666083296	19048928344		
17	5188200085	62865722893		
18	15993447527	204788961203		
19	48946213794	660181353644		
20	148574713674	2105992726468		
21	448343690109	6661347725003		

two different lattices makes this, in our view, unlikely. Series of similar, indeed shorter, length have in the past agreed with analogous theoretical calculations. We therefore consider it appropriate to bring into question the theoretical calculation.

In summary, we have calculated the mean-square distance of monomers to the origin on the square and triangular lattices respectively. Combining these data with the known data for the radius of gyration and the mean-square end-to-end distance, we compared the numerical calculation with the theoretical prediction of Cardy and Saleur. The numerical results are in disagreement with the above theoretical prediction within the quoted errors. We also calculated the mean-square distance of the centre of mass to the origin to ensure that the definition we are using is compatible with the available data.

One of us (AJG) thanks John Cardy for helpful discussions, and acknowledges support from the Australian Research Council. The other (YSY) wishes to thank the University of Melbourne for financial assistance and hospitality.

References

[1] de Gennes P G 1979 Scaling Concepts in Polymer Physics (Ithaca, NY: Cornell University Press)
[2] Cardy J L and Saleur H 1989 J. Phys. A: Math. Gen. 22 L601
[3] Zamolodchikov A B 1986 JETP Lett. 43730
[4] Nienhuis B 1982 Phys. Rev. Lett. 491062
[5] Behamou M and Mahoux G 1985 J. Physique Lett. 46 L689
[6] Des Cloizeaux J and Jannink G 1988 Les Polymères en Solution (Paris: Editions de Physique)
[7] Domb C and Hioe F T 1969 J. Chem. Phys. 511915
[8] Ishinabe T 1988 Phys. Rev. B 372367
[9] Guttmann A J 1987 J. Phys. A: Math. Gen. 201839
[10] Rapaport D C 1985 J. Phys. A: Math. Gen. 18 L201
[11] Majid I, Djordjevic Z V and Stanley H E 1983 Phys. Rev. Lett. 51143
[12] Grassberger P 1982 Z. Phys. B 48255
[13] Martin J L and Watts M G 1971 J. Phys. A: Gen. Phys. 4456
[14] Guttmann A J 1989 Phase Transitions and Critical Phenomena vol 13, ed C Domb and J L Lebowitz (New York: Academic) p 1

[^0]: \dagger Permanent address: Department of Physics, Shanxi University, Taiyuan, Shanxi, People's Republic of China.

